Single-phase fluid flow classification via learning models
نویسندگان
چکیده
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. This paper applies learning models, such as support vector machines (SVM), neural networks, and mixed-integer programming kernel classifiers (MIPKC) to classify the flow pattern of a non-Newtonian fluid in an annulus/pipe. Classification of flow patterns is characterized by six attributes that represent the parameters that determine the fluid flow in the annulus/pipe. The SVM and MIPKC learning models construct a separating hyperplane in the feature space. The weights of the hyperplane represent a scaled level of importance for each of the parameters. Preliminary results show that the most efficient model with respect to computation time favours the SVM model with a polynomial kernel of degree 2. However, with respect to low error rates and sparseness of solution, one of the MIPKC models with a polynomial kernel of degree 2 outperforms the other methods. 1. Introduction Prediction of flow patterns is very important in the design of a variety of engineering systems. In many drilling operations, the engineers have to investigate the flow of drilling fluids and cements down the circular bore of the drill string and up the circular annular space between the drill string and the casing or open hole, so as to obtain accurate estimates of their frictional pressure losses. To obtain accurate pressure drop estimates, the pattern of the fluid flow needs to be established. Hence, knowledge of the flow pattern is vital information on drilling fluids and cement slurries, which is essential in well planning. Fluid flow pattern is determined by the generalized Reynolds number (N re) thanks to the experimental work of Osborne Reynolds who determined the parameters that influence fluid flow (Bared 1990). If N re , 2100, then the flow is defined as laminar flow and if N …
منابع مشابه
Investigation of nanoparticles diameter on free convection of Aluminum Oxide-Water nanofluid by single phase and two phase models
In this research, effect of nanoparticles dimeter on free convection of aluminum oxide-water was investigated in a cavity by single phase and two phase models. The range of Rayleigh number is considered 105-107 in volume fractions of 0.01 to 0.03 for nanoparticles with various diameters (25, 33, 50 and 100 nm). Given that the two phase nature of nanofluids, necessity of modeling by this method ...
متن کاملThree-dimensional CFD modeling of fluid flow and heat transfer characteristics of Al2O3/water nanofluid in microchannel heat sink with Eulerian-Eulerian approach
In this paper, three-dimensional incompressible laminar fluid flow in a rectangular microchannel heat sink (MCHS) using Al2O3/water nanofluid as a cooling fluid is numerically studied. CFD prediction of fluid flow and forced convection heat transfer properties of nanofluid using single-phase and two-phase model (Eulerian-Eulerian approach) are compared. Hydraulic and thermal performance of microch...
متن کاملNumerical Study of Single Phase/Two-Phase Models for Nanofluid Forced Convection and Pressure Drop in a Turbulence Pipe Flow
In this paper, the problem of turbulent forced convection flow of water- alumina nanofluid in a uniformly heated pipe has been thoroughly investigated. In numerical study, single and two-phase models have been used. In single-phase modeling of nanofluid, thermal and flow properties of nanofluid have been considered to be dependent on temperature and volume fraction. Effects of volume fraction a...
متن کاملSolving Single Phase Fluid Flow Instability Equations Using Chebyshev Tau- QZ Polynomial
In this article the instability of single phase flow in a circular pipe from laminar to turbulence regime has been investigated. To this end, after finding boundary conditions and equation related to instability of flow in cylindrical coordination system, which is called eigenvalue Orr Sommerfeld equation, the solution method for these equation has been investigated. In this article Chebyshev p...
متن کاملComparison of the hyperbolic range of two-fluid models on two-phase gas -liquid flows
In this paper, a numerical study is conducted in order to compare hyperbolic range of equations of isotherm two-fluid model governing on two-phase flow inside of pipe using conservative Shock capturing method. Differential equations of the two-fluid model are presented in two forms (i.e. form I and form II). In forms I and II, pressure correction terms are hydrodynamic and hydrostatic, respecti...
متن کاملComparison of Thermal Dispersion Effects for Single and two Phase Analysis of Heat Transfer in Porous Media
The present work involves numerical simulation of a steady, incompressible forcedconvection fluid flow through a matrix of porous media between two parallel plates at constanttemperature. A Darcy model for the momentum equation was employed. The mathematical model forenergy transport was based on single phase equation model which assumes local thermal equilibriumbetween fluid and solid phases. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. General Systems
دوره 40 شماره
صفحات -
تاریخ انتشار 2011